<u>Problem 1</u>: Solve each of the following IVPs

a)
$$y' = xe^{x^2 - \ln(y^2)}$$
 $y(1) = 2$
b) $3xy' + y = 12x$ $y(1) = 1$
c) $y' = 1 + x + y + xy$ $y(2) = 3$
d) $(e^{2y} - y)\cos x \frac{dy}{dx} = e^y \sin 2x$ $y(0) = 0$
e) $y' = \frac{3x^2 - y^2}{2xy}$ $y(1) = 1$
f) $y' = \ln(x + \sqrt{x^2 - 1})^y$ $y(1) = e$
g) $\cos^2(x)y' + y = 1$ $y(0) = -3$
h) $x\frac{dy}{dx} - y = e^{x^2}y^5$ $y(2) = 4$
i) $\frac{dy}{dx} = \frac{y^2 \ln(\frac{y}{x}) + x^2}{xy \ln(\frac{y}{x})}$ $y(e) = 2$
j) $\frac{dy}{dx} = \frac{y^3 + 2xy^2 + x^2y + x^3}{x(x+y)^2}$ $y(2) = 5$
k) $\frac{dy}{dx} = \frac{1}{2} \frac{(x+y-1)^2}{(x+2)^2}$ $y(1) = 2$
l) $(2e^{2x} + e^y)dx + (3e^{2x} + 4xe^y)dy = 0$ $y(1) = 1$

Problem 2

Consider the ODE,

$$y' = \frac{y}{x} - 2y^2,$$

defined on the region x > 0. Suppose that at $x_1 > 0$, a solution y(x) is between the two curves $y = \frac{1}{x}$ and y = 0. Show that for all $x > x_1$, the solution is trapped between these curves.

Extra Credit Let $x_1 > 0$ and $y_1 > 0$. Prove that the solution of the IVP,

$$\begin{cases} y' = \frac{y}{x} - 2y^2, \\ y(x_1) = y_1 \end{cases}$$

is bounded as $t \to \infty$.

Problem 3

Show that $I = \frac{1}{x^2 + y^2}$ is an integrating factor for

$$(y + xf(x^{2} + y^{2}))dx + (yf(x^{2} + y^{2}) - x)dy = 0$$

Problem 4

Show that multiplying both sides of the differential equation

$$(P(x)y - Q(x))dx + dy = 0$$

by an integrating factor $I = e^{\int P(x)dx}$ will transform the above equation into an exact equation.