Problem 1: Solve each of the following IVPs
a) $y^{\prime}=x e^{x^{2}-\ln \left(y^{2}\right)}$
$y(1)=2$
b) $3 x y^{\prime}+y=12 x$
$y(1)=1$
c) $y^{\prime}=1+x+y+x y$
$y(2)=3$
d) $\left(e^{2 y}-y\right) \cos x \frac{d y}{d x}=e^{y} \sin 2 x \quad y(0)=0$
e) $y^{\prime}=\frac{3 x^{2}-y^{2}}{2 x y} \quad y(1)=1$
f) $y^{\prime}=\ln \left(x+\sqrt{x^{2}-1}\right)^{y} \quad y(1)=e$
g) $\cos ^{2}(x) y^{\prime}+y=1 \quad y(0)=-3$
h) $x \frac{d y}{d x}-y=e^{x^{2}} y^{5} \quad y(2)=4$
i) $\frac{d y}{d x}=\frac{y^{2} \ln \left(\frac{y}{x}\right)+x^{2}}{x y \ln \left(\frac{y}{x}\right)} \quad y(e)=2$
j) $\frac{d y}{d x}=\frac{y^{3}+2 x y^{2}+x^{2} y+x^{3}}{x(x+y)^{2}} \quad y(2)=5$
k) $\frac{d y}{d x}=\frac{1}{2} \frac{(x+y-1)^{2}}{(x+2)^{2}} \quad y(1)=2$

1) $\left(2 e^{2 x}+e^{y}\right) d x+\left(3 e^{2 x}+4 x e^{y}\right) d y=0 \quad y(1)=1$

Problem 2

Consider the ODE,

$$
y^{\prime}=\frac{y}{x}-2 y^{2}
$$

defined on the region $x>0$. Suppose that at $x_{1}>0$, a solution $y(x)$ is between the two curves $y=\frac{1}{x}$ and $y=0$. Show that for all $x>x_{1}$, the solution is trapped between these curves.
Extra Credit Let $x_{1}>0$ and $y_{1}>0$. Prove that the solution of the IVP,

$$
\left\{\begin{array}{c}
y^{\prime}=\frac{y}{x}-2 y^{2} \\
y\left(x_{1}\right)=y_{1}
\end{array}\right.
$$

is bounded as $t \rightarrow \infty$.

Problem 3

K. YAGHI - PRACTICE PROBLEMS - MATH 202

Show that $I=\frac{1}{x^{2}+y^{2}}$ is an integrating factor for

$$
\left(y+x f\left(x^{2}+y^{2}\right)\right) d x+\left(y f\left(x^{2}+y^{2}\right)-x\right) d y=0
$$

Problem 4

Show that multiplying both sides of the differential equation

$$
(P(x) y-Q(x)) d x+d y=0
$$

by an integrating factor $I=e^{\int P(x) d x}$ will transform the above equation into an exact equation.

